Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.
نویسندگان
چکیده
We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.
منابع مشابه
Gelation Time of Hexamethylenetetramine Polymer Gels Used in Water Shutoff Treatment
Among the methods available to reduce water production, injecting a gelling system composed of a polymer and a crosslinker has been widely used. In this work, a hydrogel was prepared by crosslinking of an aqueous solution containing hexamethylenetetramine (HMTA) as crosslinker, hydrochloric acid (HCl) as an activator, and the co-polymer of 2-acrylamido-2methyl-propanesulfonic-acid sodium salt (...
متن کاملExperimental and Theoretical Investigation of Gelation Time of Nanostructured Polymer Gels by Central Composite Approach
Currently available polymers as a component of in-situ gels are unsuitable for treating high-temperature/high-salinity reservoirs due to their chemical and thermal degradation. In this study, a new copolymer-based gel system including high molecular weight nanostructured polymers (NSPs) was developed to address the excessive water production problem in reservoirs under harsh conditions. The sta...
متن کاملEffect of Inorganic Polymer Gel Systems on Residual Resistance Factor in Fractured Core Model
Excessive water production through fractures become an important problem in oil exploration of fractured reservoirs. For this purpose, polymer gels were prepared by crosslinking of aqueous solutions of polymer and crosslinker for the purpose of water management in high water cut fractured reservoirs. A copolymer of sulfonated polyacrylamide was used as polymer and chromium triacetate (Cr(OA...
متن کاملDiffusion-induced spontaneous pattern formation on gela- tion surfaces
– Although the pattern formation on polymer gels has been considered as a result of the mechanical instability due to the volume phase transition, we found a macroscopic surface pattern formation not caused by the mechanical instability. It develops on gelation surfaces, and we consider the reaction-diffusion dynamics mainly induces a surface instability during polymerization. Random and straig...
متن کاملPreparation of Nimodipine Loaded Microspheres: Evaluation of Parameters
The purpose of this study was to prepare and characterize nimodipine loaded microspheres using ethyl cellulose (EC) as a carrier polymer through an emulsion solvent evaporation method. These evaluations characterized the pattern of drug release from prepared microspheres. Nimodipin loaded microspheres were prepared using an emulsification solvent evaporation method. The effect of proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 45 شماره
صفحات -
تاریخ انتشار 2014